Reduction of Plant Diseases Using Nutrients 'Fertilizer Labels-A Foreign Language'

Jerald E. Wheeler

Plant Pathologist/Agronomist Winfield Solutions, LLC Product Development Manager Tucson, Arizona

Essential Plant Nutrients

17

Plant Nutrient Uptake

1.Dissolve in water (form ions)

Soil Solution, Foliage

Carbon (CO₂), Nitrogen fixation (N₂)

Nutrients: 3 of 17

Carbon C (Carbon Fixation, Photosynthesis)

Oxygen O Hydrogen H

Mainly from air and water

Essential Nutrients, 14

Nutrient	Fertilizer	Uptake Form			
Nitrogen N	Urea, NH4, NO3	$\mathrm{NH}_4^+, \mathrm{NO}_3^-$			
Phosphorus P	Phosphate	HPO ₄ -2, H ₂ PO ₄ -1			
Potassium K	Potash	\mathbf{K}^+			
Ca, Mg, Zn, Mn, Cu, Fe, Ni (all as divalent cations) ⁻²					
Sulfur S	Sulfate	SO ₄ -2			
Chlorine Cl	Chloride	Cl -1			
Boron B	Borate	H ₃ BO ₃			
Molybdenum Mo	Molybdate	MoO ₄ -2			

Beneficial Nutrients

Not shown to be essential.

Many! Maybe 12 or more!

Another seminar!

14 Essential Nutrients Uptake Must be soluble in water! Soil Solution: Equilibrium

Insoluble ----- Soluble

Hydroponics

Foliar Feed Solution

Nitrogen (N)

Percentage listed in pure form

20-20-20

20% Nitrogen

Nitrogen

<u>3 Chemical Forms</u>

Urea

Ammonium

Nitrate

Fertilizer Label

Phosphorus (P) & Potassium (K)

Listed as % oxides.

Not in the elemental forms.

 P_2O_5

 K_2O

Nutrients are listed in elemental forms.

N, P, K etc.

Typical/General Concentrations Found in Dried <u>Plant Material as Dry Weight</u>

Primary		Plant/Mobility
Nitrogen (N)	4.0%	High
Phosphorus (P)	0.5%	High
Potassium (K)	<u>4.0%</u>	Very High
<u>Secondary</u>		
Calcium (Ca)	1.0%	Low
Magnesium (Mg)	0.5%	High
Sulfur (S)	0.5%	Low -Medium

Typical/General Concentrations Found in Dried Plant Material as Dry Weight

Micronutrients		Plant/Mobility
Iron (Fe)	200 ppm ?	Low
Manganese (Mn)	200 ppm ?	Low
Zinc (Zn)	30 ppm	Low
Copper (Cu)	10 ppm ?	Low
Boron (B)	60 ppm	High
Molybdenum (Mo)	1 Nitr	ogen Utilization
Nickel (Ni)	? Nitr	ogen Fixation

Fertilizer Analysis: 10-30-20

Nitrogen

(Ammonium, Nitrate, Urea) Phosphate 30 %(P₂O₅)_X_43.6%) <u>13.08%</u> P Potash 20% (K₂O X 83%) <u>16.6 % K</u>

Elemental Analysis: 10--13.08--16.6

Soluble Fertilizer Rates/Soilless Mixes

20-20-20, 10-30-20, 10-26-38

(all + micronutrients)

Normal Watering of Pots and Flats

<u>2 lbs. in 100 gal.</u>

Applied at 1 quart per sq. foot or as normal watering.

Soluble Fertilizer Rates/Soilless Mixes

Normal Watering of Pots and Flats

<u>2 lbs. in 100 gal.</u>

1 oz. in 3 gallons

1 tablespoon in 3 gallons ¾ teaspoon in 1 quart

Soluble Fertilizer Rates/Soilless Mixes

20-20-20, 10-30-20, 10-26-38

(all + micronutrients)

Injections Rates

<u>200-300 ppm N</u> per 7-21 days

Some labels go as high as <u>470 ppm N</u>.

Fertilizer Rates/Soilless Mixes*

*Lower rates of solubles by 25-50%!

Amendment	Oz/Cu. Ft.	<u>Nutrients</u>
Dolomitic lime	2-10	Ca, Mg
Lime	2-10	Ca
Gypsum	2-10	Ca, S
K-Mag (21/10/21)	4-5	K, Mg, S
Ammonium Phospha	ate 2-3	N, P
Ferrous sulfate	1/4	Fe, S

Slow-release

14-14-14

N = 100% P = 43.6% K = 83%

14--6.1--11.62

Target soilless mix pH: 6.0-6.8

Best solubility of most nutrients best at 6.8.

Phosphorus most soluble at pH 6.5.

The pH becomes too low, too acid.

1. Degradation of organic matter

2. Application of soluble fertilizers

3. Organic matter has low pH, e.g. peat moss

Soilless Mixes

Adjust up, increase pH using lime.

Calcium carbonate

Calcium/Magnesium carbonate (Dolomitic lime)

"Special Case"

Fusarium oxysporum-Crown Rot

This fungus kills ferrocacti if soil pH is acid. Adjust soil pH to greater than 7.0. Lime!

Cacti, Succulents and Native Plants Respond to Higher Nutrient Levels

1.Optimum Yield/Growth

2. Disease & Insect Resistance

Most Important Nutrients for Disease Resistance

K, Ca, Cu, B, Mn, S, Si*

* Not essential, but beneficial

Most Important Nutrients for Disease Resistance

"<u>Context</u>"

Sufficient Quantities of all Essential Nutrients Must be Delivered to the Plant

1992 Dr. Steve Petrie

534 References Reviewed

K⁺ Most Important

Insect and Disease Reduction

1. Mobilization of Plant Defense System

2. Increases Cuticle Thickness

Tolerance to Adverse Conditions

Stress: Heat, Cold, Drought

Potassium K⁺: 4 Issues

Tied up in clay soils Slowly available from native soils Leaches out in light soils High nitrogen overcomes K effect

Potassium Behavior in Soil

K+

Soil Solution

× K+ Fixed

Source: Unocal Nitrogen Group

Effect of K, N and Ca on Severity of Phytophythora Diseases

Pathogen	Host/Disease	Factor	<u>Effect</u>
P. infestans	Potato Late Blight	K	Decrease
Ų		K	None
		High K	
		High N	Increase
P.capsici	Pepper Blight	K	Decrease
P.drechsleri	Pigeon Pea Blight		
		High K	
		Low N	Decrease
P. parasitica	Citrus gummosis		
		High K	
		Low Ca	Increase
Phytophthora, Its B MN Page 191	Biology, Taxonomy, Ecology and	l Pathology, 1983	3 APS Press, St. Paul ,

Solutions to K needs:

1. Increase soil concentration, apply more K more often (3% CEC)

2. Foliar applications of high K and low N fertilizers

1.Fortifies the Middle Lamella

Middle Lamella = Calcium Pectate

2. Slows degradation by pathogens

(Especially soft rot bacteria that attack cacti and succulents.)

More Calcium in Middle Lamella Reduces Pathogen Enzyme Activity

Pectolytic Enzyme Activity:

Polygalacturonase

Stops Motile Spores=Zoospores

Encyst or Stop Swimming

Phytophthora and Pythium

Pathogens of Cacti and Succulents

Phytophthora species

Boogum-trees

Pathogens of Cacti and Succulents

Pythium species

Hosts Agaves, Cacti & Euphorbiaceae seedlings

1.Increases Plant Membrane Stability

2. Improves Soil Structure: Water/Oxygen Distribution

3. Lime Increases Soil pH: <u>Fusarim</u> Spore Attachment (ferrocacti, bananas)

4.Reduces Rhizoctonia enzyme activity

Severity o	of Infec Par	ween Cation tion with <i>Bot</i> s. In Lettuce	content and rytis cinerea
Cation con	<u>ntent (n</u>	ng/g dry wt.)	_Infection ¹
K	Ca	Mg	with Botrytis
14.4	10.6	3.2	4
23.8	5.4	4.1	7
34.2	2.2	4.7	13
48.9	1.8	4.2	15
$\frac{1}{2}$ Infection index:		0-5 slight infection 6-10 moderate infection 11-15 severe infect	ction
Based on Krauss (1971 Marschner, P.447). 1998. "Mi	neral Nutrition of Higher	r Plants." 2 nd ed. Horst

Tentative Summary of the Effect of <u>Nitrogen</u> and <u>Potassium</u> Levels on the Severity of Diseases Caused by Parasites

	<u>Nitrogen Level</u>	
Pathogen and Disease	Low	High
Obligate parasites		
Puccinia spp. (rusts)	+	+++
Erysiphe graminis (powdery mildew)	+	+++
Facultative parasites		
Alternaria spp. (leaf spots)	+++	+
Fusarium oxysporum (wilts and rots)	+++	+
Xanthormonas spp. (spots and wilts)	+++	+

Tentative Summary of the Effect of Nitrogen and Potassium Levels on the Severity of Diseases Caused by Parasites (continued)

	Potassium Level	
Pathogen and Disease	Low	<u>High</u>
<u>Obligate parasites</u>		
Puccinia spp. (rusts)	++++	+
Erysiphe graminis (powdery mildew)	++++	+
Facultative parasites		
Alternaria spp. (leaf spots)	++++	+
Fusarium oxysporum (wilts and rots)	++++	+
Xanthormonas spp. (spots and wilts)	++++	+

Based on Kiraly (1976) and Perrenoud (1977). 1998. "Mineral Nutrition of Higher Plants. 2nd ed. Horst Marschner." p. 443.

Cu⁺⁺ - Copper

Increases cuticle thickness

Cuticle: a barrier to infections

<u>Cu++</u> - Copper

• Necessary for polyphenoloxidase activity.

• Polyphenoloxidase system produces some phytoalexins and other antipathogenic molecules.

Phytoalexins-antimicrobial compounds produced by plants in response to a hostparasite interaction.

Some phytoalexins are phenolics.

Others such as <u>sulfur</u> are not organic molecules.

1. Increases the uptake of cations (Blevins, Schon, U. of Missouri)

2. K, Ca and Cu are cations that are vital for plant resistance to disease.

3. Involved in the metabolism of phenolics.

<u>Phenolics</u> include phytoalexins and other molecules that are toxic to plant pathogens.

<u>Phytoalexins</u> are phenolics that are toxic to plant pathogens.

Qinones from phenolics may form: also toxic to plant pathogens.

Manganese Mn⁺⁺

1988 Study by Huber and Wilhelm

82 scientific papers were review

Papers addressed disease and Mn content.

All but 4 papers indicated that added Mn decreased disease.

Two of the 4 papers showed Mn in the toxic range.

Involved in the production of lignin.

•Lignin is the principal component of wood and very difficult to degrade.

•Wheat with higher uptake of manganese has a higher content of lignin and is more resistant to take-all disease.

• Mn⁺² inhibits the enzyme pectin methyl-esterase.

 Pectin methylesterase is a fungal pathogen exoenzyme for degrading host cell walls. Diseases Reduced or Controlled by the Addition of Manganese

 Take-all and powdery mildew of wheat Common scab of potato •Blast and leaf spot of rice Root rot of avocado Powdery mildew of canola, sorghum Nematodes attacking barley

Not directly involved in disease resistance

Most important micronutrient in plants

•A cofactor for more than 100 plant enzymes

•Applications to foliar almost always produce a response in plans.

Dicots are more reactive than monocots

Questions!

106 KUNOH ANN, REV. PLANT, 1990, 28:93-111.

Major Turf Disease Problems

- Turfgrass patch diseases
- Pythium blight
- Dollar spot
- Fusarium blight

Patch Diseases

More prevalent during the past 3 year.
More positive IDs during last year.
Several fungal pathogens involved.
Identification/taxonomy is unclear.
All ascomycetes: Indicates the active fungicides.

Pathogenic Patch Fungi

<u>Genera</u>

•Leptosphaeria Magnaporthe Gaeumannomyces

Sexual stages: Ascomycetes (powdery mildews)
All form black or olivaceous ectotrophic hyphae
Ectotrophic hyphae: mycelium over root surfaces

Turfgrass Patch Diseases

- Take-all Bentgrass
 <u>Gaeumannomyces graminis</u> var. <u>avenae</u>
- Bermudagrass Decline Bermudagrass
 <u>G. graminis</u> var. <u>graminis</u>

Turfgrass Patch Diseases

 Necrotic Ring Spot Bentgrass Poa annua, P. trivialis

<u>Festuca</u> <u>rubra</u>

<u>Leptosphaeria</u> korrae

•Spring Dead Spot Bermudagrass Leptosphaeria narmari

Turfgrass Patch Diseases

•Summer Patch Fescues, Poa, Bentgrass

•Magnaporthe poae

Reducing Take-All and Other Patch Diseases

- Soil pH in the acid range (?)
- Potassium 200-250 PPM USGA Greens
- Sulfur (sulfate as nutrient and to lower pH)
- Mn⁺⁺ 35 or more parts per million

Reducing Take-All and Other Patch Diseases

• Ca as gypsum (calcium sulfate)

• Cu, Fe, and Zn

Control nitrogen, use NH₄ or urea

Mineral Elements Affecting Take-all of Cereals

Increase Take-all Potassium nitrate Phosphorus excess Calcium carbonate (lime) Magnesium carbonate Magnesium sulfate Molybdenum

Reduce Take-all Potassium chloride Phosphorus sufficiency Sulfur **Magnesium chloride Calcium chloride** Manganese Iron, Zinc **Copper chloride**

<u>Forms of Nitrogen</u> <u>General Effects</u>

Ammonium, Urea-----Acid Forming Rhizosphere pH decrease Modify Rhizosphere Microbes Increase available Mn, Fe, Cu, Zn Acidification decreases nitrification: NH₄ to NO₃

Disease Suppression is Simple Interactions are Complicated

Root Exudates

Rhizosphere Microbes Plant Nutritional Status Soil Type

Correlation of factors influencing the form on N in soil and severity of disease-Take all. Adapted from Huber, Purdue				
Factor	Nitrification	Disease		
Nitrate nitrogen		Increase		
Ammoniacal nitrogen		Decrease		
Liming	Increase	Increase		
Acid Soils	Decrease	Decrease		
Chloride	Decrease	Decrease		

Take-all Patch, Gaeumannomyces

No resistanceManganese is most important nutrient. Why?

1.Direct toxicity to fungus? 2.Increase in photosynthesis corresponding to greater carbon supply and more organic compounds in soil.? Rhizosphere microflora

Research has ruled out #1 and #2.

Take-all Patch, Gaeumannomyces

3. Increase synthesis of ligneous defense products in roots.

Manganese in Equilibrium in Soil and Availability

Acid pH in soil and rhizosphere = Mn⁺⁺ Alkaline pH in soil and rhizosphere = Mn⁺⁴ Mn⁺⁺ Available

will' Available

Mn⁺⁴ Non-available

<u>Manganese Influence on Root Lesions and Lignin</u> <u>in Wheat</u>

	Total Length of Ggt lesio	ns Lignin Content
Variable	(mm)	(Abs ₂₈₀ /root system)
Mn, mg/k	g soil	
0	38	0.14
3	28	0.12
30	23	0.25
300	22	0.28

From "Biochemistry of Metal Micronutrients in the Rhizosphere" Chapter 10, Regel, Pedler, & Graham.
<u>Root Lesions and Lignin Content in Root Tissues of</u> <u>Four Wheat Genotypes</u>

Total	Length of Ggt Lesion	Lignin Content
Genotype	(mm)	(Abs ₂₈₀ /root system)
Mn-inefficient		
Bayonet	30	0.14
Millewa	27	0.16
Mn-efficient		
Aroona	26	0.22
C8MM	23	0.27

Significance Turkey's 0.05; Adapted from "Biochemistry of Metal Micronutrients in the Rhizosphere" Chapt. 10,

Rengel, Pedler, and Graham

Fungicides for Control of Takeall and Patch Diseases

Conditions: Soil Temperature at 2" 65 F for 6 days.

Fungicides: Heritage Banner MAXX Bayleton **Compass** Eagle **Rubigan** Sentinel

Benzimidazoles: Fungo, Cleary 3336

Application: 4-5 gallons per 1000 sq. ft.

Pythium Blight

• **<u>Pythium aphanidermatum</u>** (water mold)

Often Seen During:

- High humidity
- Hot weather
- Summer rainy season

Reducing Pythium Blight

High potassium:
<u>250 PPM_USGA_Greens</u>

At lease 3% of cation saturation

• Higher potassium for greens with higher clay content and organic matter content

Reducing Pythium Blight

- Calcium-drainage and nutrition
- Copper 1-3 PPM in soil
- Control nitrogen

Dollar Spot

• <u>Sclerotinia</u> <u>homoeocarpa</u> (fungus)

<u>Reducing Dollar Spot</u>

- Maintain sufficient nitrogen
- Balance nitrogen with high potassium
- Collect clippings and reduce thatch
- Maintain calcium
- Gypsum and sulfur-water penetration, stress

Fusarium Blight

• <u>Fusarium</u> species (fungus)

Reducing Fusarium Blight

- Reduce stress (potassium, calcium)
- Maintain soil pH close to neutral (lime)
- Control nitrogen

Reducing Pythium and Phytophthora

- High potassium
- High calcium
- Good drainage-gypsum, sulfur
- Acivator 90 20 PPM kills zoospores

Free Calcium

Increases Plant Membrane Stability

Improves Soil Structure: Water/Oxygen Distribution

Lime Increases Soil pH:

Stops or Reduces Spore Pathogen Attachment

106 KUNOH ANN, REV. PLANT, 1990, 28:93-111.